(博主亲自录制视频教程)
医药统计项目联系QQ:231469242
两个配对样本,均匀分布,非正太分布
Wilcoxon signed-rank test
曼-惠特尼U检验Mann–Whitney Test
两个独立样本,均匀分布,非正太分布
两组样本量必须大于20
例子:A方案治疗和B方案治疗是否有显著差异?a=0.05
此例子简单说明计算过程,但不准确,因为样本数必须大于20
参照使用Z分数表
如果Z分数小于-1.96或大于1.96,拒绝原假设
计算排名
一共12个数,排名从1-12,第一12,第十二36,第四名和第五名都是19
第四名和第五名都平均为4.5
计算每个score的points
B样本的12,小于A的一个样本得1分,都小于A的样本,A的样本是6,所以得6*1=6分
A样本的28,小于B的一个样本得1分,都大于A的样本,A的样本是6,所以得6*0=0分
UA,A样本的所有points相加
UB,B样本的所有Points相加
U值取UA和UB的最小值
计算Z分数,其公式如图:
nA,nB 表示两个样本量
计算的Z值=-2.88,小于-1.96,拒绝原假设
Nonparametric Comparison of Two Groups:
Mann–Whitney TestIf the measurement values from two groups are not normally distributed we haveto resort to a nonparametric test. The most common nonparametric test for thecomparison of two independent groups is the Mann–Whitney(–Wilcoxon) test.Watch out, because this test is sometimes also referred to as Wilcoxon rank-sumtest. This is different from the Wilcoxon signed rank sum test! The test-statistic forthis test is commonly indicated with u: u_statistic, pVal = stats.mannwhitneyu(group1, group2)https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/08_Test
sMeanValues/twoGroups. Code: “ISP_twoGroups.py”3: Comparison of two groups, paired and unpaired.
举例:
判断两组数是否有显著差异,group1=[28,31,36,35,32,33,21,12,12,23,19,13,20,17,14,19] group2=[12,18,19,14,20,19,12,11,8,9,10,15,16,17,10,16]
# -*- coding: utf-8 -'''每组样本量必须大于20'''import scipy.stats as statsgroup1=[28,31,36,35,32,33,21,12,12,23,19,13,20,17,14,19]group2=[12,18,19,14,20,19,12,11,8,9,10,15,16,17,10,16]u_statistic, pVal = stats.mannwhitneyu(group1, group2)'''Out[2]: MannwhitneyuResult(statistic=46.5, pvalue=0.0011073479271168959)p值小于0.05,两组数据有显著差异'''
p值小于0.05,有显著差异,拒绝原假设,两组数据有显著差异